Information Flow between Weakly Interacting Lattices of Coupled Maps
نویسندگان
چکیده
Weakly interacting lattices of coupled maps can be modeled as ordinary coupled map lattices separated from each other by boundary regions with small coupling parameters. We demonstrate that such weakly interacting lattices can nevertheless have unexpected and striking effects on each other. Under specific conditions, particular stability properties of the lattices are significantly influenced by their weak mutual interaction. This observation is tantamount to an efficacious information flow across the boundary.
منابع مشابه
Uniqueness of the Srb Measure for Piecewise Expanding Weakly Coupled Map Lattices in Any Dimension
We prove the existence of a unique SRB measure for a wide range of multidimensional weakly coupled map lattices. These include piecewise expanding maps with diffusive coupling.
متن کاملOrder Almost Dunford-Pettis Operators on Banach Lattices
By introducing the concepts of order almost Dunford-Pettis and almost weakly limited operators in Banach lattices, we give some properties of them related to some well known classes of operators, such as, order weakly compact, order Dunford-Pettis, weak and almost Dunford- Pettis and weakly limited operators. Then, we characterize Banach lat- tices E and F on which each operator from E into F t...
متن کاملSome properties of b-weakly compact operators on Banach lattices
In this paper we give some necessary and sufficient conditions for which each Banach lattice is space and we study some properties of b-weakly compact operators from a Banach lattice into a Banach space . We show that every weakly compact operator from a Banach lattice into a Banach space is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...
متن کاملSome results on $L$-complete lattices
The paper deals with special types of $L$-ordered sets, $L$-fuzzy complete lattices, and fuzzy directed complete posets.First, a theorem for constructing monotone maps is proved, a characterization for monotone maps on an $L$-fuzzy complete lattice is obtained, and it's proved that if $f$ is a monotone map on an $L$-fuzzy complete lattice $(P;e)$, then the least fixpoint of $f$ is meet of a spe...
متن کاملEquilibrium Measures for Coupled Map Lattices: Existence, Uniqueness and Finite-Dimensional Approximations
We consider coupled map lattices of hyperbolic type, i.e., chains of weakly interacting hyperbolic sets (attractors) over multi-dimensional lattices. We describe thermodynamic formalism of the underlying spin lattice system and then prove existence, uniqueness, mixing properties, and exponential decay of correlations of equilibrium measures for a class of Holder continuous potential functions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005